Optimal Strategies of the Iterated Prisoner's Dilemma for Multiple Conflicting Objectives

Shashi Mittal and Kalyanmoy Deb, IIT Kanpur

Email: <u>deb@iitk.ac.in</u>, http://www.iitk.ac.in/kangal

The game

Why multi-objective GA?

Tournament scores

		Player 2		
	Decision	Cooperate	Defect	
Р				
1	Cooperate	R=3 R=3	S=0 T=5	
a v	1			
e .				
r				
1	Defect	T=5 S=0	P=1 P=1	

Encoding strategies

• The two objectives, maximizing selfscore and minimizing opponent score are conflicting

A game can also be won by minimizing the opponent's score

 Multi-objective will give a set of Pareto-optimal strategies, which can give useful insight about optimal strategies

Player	Average score	
Strategy MO	431	
Strategy SO	421	
Tit for Tat	394	
Hard Tit for Tat	379	
Soft Majority	375	
Tit for two tats	374	
Spiteful	368	
Naïve prober	362	
Remorseful prober	351	
Always cooperate	343	
Pavlov	341	
Suspicious tit for tat	327	
Periodic player CD	320	
Periodic player CCD	320	
Hard majority	307	
Random player	296	
Always defect	288	
Periodic player DDC	286	

Axelrod's method of encoding strategies: Assign a value to each possible pair of Moves: e.g. R = 0, T =1, S = 2 and P = 3. Specify a move for a history of three moves. Using this scheme, a particular strategy can be defined as a 70-bit binary string (64 for history 3 moves, and 6 for pre-game behavior)

Say, previous three moves are:						
	Player 1	Player2	Code			
Move	1 C	С	R			
Move	2 D	С	T			
Move	3 C	С	R			
RTR=(010) = 4						
Player 1 chooses 5-th position						

Outcome: (C) or Cooperate

Axelrod's work

Results obtained by using **NSGA-II**

The above figure shows the initial random solutions (shown with '+') and the Pareto-optimal front (shown in 'x') obtained using NSGA-II

Strategy SO: Strategy obtained using single-objective GA

Strategy MO: Strategy obtained using NSGA-II

Results

There is indeed a trade-off between the two objectives

 NSGA-II gives strategies which outperform the other strategies, as well as the one obtained using singleobjective GA

Strategies lying on the Paretooptimal front share some interesting

single-objective ■ He used genetic algorithm (GA) to evolve optimal strategies against a set of opponents

The strategies so obtained performed quite well in a round robin tournament, and defeated other optimal strategies (e.g. *Tit for Tat*)

Our approach

Use a **multi-objective** genetic algorithm:

Maximize self score

Minimize opponent score

16 other players were included in the round robin tournament.

NSGA-II algorithm was used to obtain the set of Pareto-optimal strategies.

This figure shows the Pareto optimal front together with a few other strategies. It shows that the strategy obtained using single objective GA is dominated by the Pareto-optimal front.

common features

Other strategies used Always cooperate: Cooperates on every move

Always defect: Defects on every move

Tit for tat: Cooperates on first move, then copies opponent's last move

Suspicious tit for tat: Same as tit for tat but defects on first move

Pavlov: Cooperates on first move, and defects only when both players disagreed on prev. move

Spiteful: Cooperates until the opponent defects

Random player: Makes a random move

Periodic player CD: Plays C,D periodically

Tit for two tats: Cooperates on first move, and defects only when the opponent defects two times

Soft majority: Begins by cooperating, and cooperates if the majority of opponent's moves are cooperate

Hard majority: Begins by defecting and defects if the majority of opponent's moves are defect