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Outline

@ The problem: Appointment scheduling in health care services
@ The model: A novel robust optimization framework

@ The solution: Global balancing heuristic, closed form optimal

solution and worst case scenarios



Appointment Scheduling in Health Care Services

@ High-cost facilities: MRI, CAT Scan, Operation rooms etc.
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@ Conflicting costs: Utilization of resources versus quality of

service

@ Uncertain processing durations



The Problem

Example: Scheduling outpatient surgeries
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The Problem

Job processing:

o If job i — 1 finishes before A;, job i starts at A;.
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@ Otherwise: job 7 starts immediately after completion of job
i—1.
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Costs

C; = completion time of job i.

o C; < A;;1: underage cost u;(A;j+1 — C;). (Job i is underaged)
underage
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@ C; > A;11: overage cost 0;(C; — A;+1). (Job i is overaged)

overage

s —

I [
A1 Gy




Costs

P : a given realization of processing times of jobs.

Cost function

F(A,P) = max(0;(C; — Ait1),ui(Aip1 — Ci))

=1

Example 1: 3 jobs, u =10, 0 =1
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Costs

P : a given realization of processing times of jobs.

Cost function

F(A,P) = max(0;(C; — Ait1),ui(Aip1 — Ci))

=1

Example 1: 3 jobs, u =10, 0 =1

Total Cost =14+10+0=11



Other Applications

(]

Project scheduling (Bendavid and Golany, 2009)

(]

Serial production systems (Elhafsi 2002)

(4]

Servicing ships at seaports (Sabria and Daganzo 1989)

Professors scheduling meeting with grad students



Existing Models

p——

P;: random variable

Cost function

F(A) =Ep[F(A,P)]

Optimization problem: Minimize expected cost



Drawback 1: Intractability

@ Computing cost of a schedule may be intractable

Known methods:
@ Sequential bounding algorithm (Denton and Gupta 2003)
@ Monte Carlo techniques (Robinson and Chen 2003)
@ Local search (Kandoorp and Koole 2007)

@ Submodular function minimization (Begen and Queyranne
2009)
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Drawback 2: Need for Data

p—pp—

P;: random variable

Distribution of P; may not be known
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Our Contributions

© A robust optimization framework

@ Closed form optimal solution

© Structural insights into the problem
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The Robust Model

Given: minimum and maximum possible execution time of each job.

P: Set of all possible realization of processing times of jobs

Robust Model

F(A) = max F(A,P)

Optimization problem: minimize worst-case scenario(s) cost.
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The Global Balancing Heuristic

Main idea: Balance between maximum underage cost of job 4, and
maximum overage cost due to job i.

Maximum possible underage cost of job i = u;(a; — p,).
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The Global Balancing Heuristic

Maximum possible contribution of job i to overage costs of all jobs

succeeding i
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The Global Balancing Heuristic

Maximum possible contribution of job i to overage costs of all jobs

succeeding i: (3_7_; 0;)(B; — ai)-
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Contribution of overage of job i to overage of job i + 1
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The Global Balancing Heuristic

Equating maximum possible underage and overage costs:

n
ui(ai —p,) = () 0;)(D; — @)
j=t
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The Main Theorem

Theorem
The global balancing schedule is optimal for the robust version

when the underage costs of the jobs are equal.

Closed form optimal solution for robust model
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Intuitive Interpretation

If job i alone is scheduled:
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Intuitive Interpretation

However, if jobs i +1,...,n, are to be scheduled after job i:

WG = uip, + 0>ip;
¢ Ui + 0>

where 0>; =37, 0;.

H Worst case scenario for tail jobs
=1
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Worst Case Scenarios for the Optimal Schedule

Sequence of min-length jobs followed by max-length jobs.
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Structure of the Optimal Solution

Assigned duration to job i is in interval [p,, P;].

p, <a; <P |
|
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@ p, < a;: True for any instance (Begen and Queyranne 2009).

* = . . K
@ a’ < p;: Holds only for non-decreasing u;'s.
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Structure of the Optimal Solution

Optimal assigned duration to a job independent of jobs preceding it
Example: Optimal solution for jobs 2-5:
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Comparison with Stochastic Model

Cost parameters: u =10, 0=1

Stochastic model:

@ Job durations: Discrete version Weibull distribution with
u =48 and 0 = 26

@ Stochastic optimal solution found using local search
Robust model:

o p=p—-0=22,p=p+to="74

24



Comparison with Stochastic Model

Assigned Durations
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Relative Performance of Robust Model

ROB — OPT

Relati f =
elative performance OPT

x 100,

where
@ OPT = Average cost of stochastic optimal schedule

@ ROB = Average cost of robust optimal schedule
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Impact of Standard Deviation

Relative performance
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Conclusion

Summary
@ Closed form solution for robust model
@ Model can be used even if no historical data available

@ Structural insights into the problem
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Conclusion

Summary
@ Closed form solution for robust model
@ Model can be used even if no historical data available
@ Structural insights into the problem
Future directions
@ Solving the ordering problem
@ Scheduling multiple facilities

@ Incorporating no-shows and emergency jobs
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Thank You!

Questions??
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Impact of Number of Jobs

Relative performance
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Impact of Underage Cost

Relative performance
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