Robust Appointment Scheduling

Shashi Mittal and Sebastian Stiller

Amazon.com / TU Berlin

November 13, 2011

- The problem: Appointment scheduling in health care services
- The model: A novel robust optimization framework
- The solution: Global balancing heuristic, closed form optimal solution and worst case scenarios

Appointment Scheduling in Health Care Services

• High-cost facilities: MRI, CAT Scan, Operation rooms etc.

- Conflicting costs: Utilization of resources versus quality of service
- Uncertain processing durations

The Problem

Example: Scheduling outpatient surgeries

The Problem

Example: Scheduling outpatient surgeries

Job processing:

• If job i-1 finishes before A_i , job i starts at A_i .

• Otherwise: job i starts immediately after completion of job i-1.

 $C_i = \text{completion time of job } i.$

• $C_i < A_{i+1}$: underage cost $u_i(A_{i+1} - C_i)$. (Job *i* is underaged)

• $C_i > A_{i+1}$: overage cost $o_i(C_i - A_{i+1})$. (Job *i* is *overaged*)

Cost function

$$F(A, P) = \sum_{i=1}^{n} \max(o_i(C_i - A_{i+1}), u_i(A_{i+1} - C_i))$$

Example 1: 3 jobs, u = 10, o = 1

Cost function

$$F(A, P) = \sum_{i=1}^{n} \max(o_i(C_i - A_{i+1}), u_i(A_{i+1} - C_i))$$

Example 1: 3 jobs, u = 10, o = 1

$$\begin{array}{|c|c|c|c|c|c|} p_1 = 4 & p_2 = 2 & p_3 = 3 \\ \hline & & & \\ 0 & 3 & 7 & 10 \end{array}$$

Cost function

$$F(A, P) = \sum_{i=1}^{n} \max(o_i(C_i - A_{i+1}), u_i(A_{i+1} - C_i))$$

Example 1: 3 jobs, u = 10, o = 1

	$p_1 = 4$	0	$p_2 = 2$	u	$p_3 = 3$
0	;	3		-	7 10

Cost function

$$F(A, P) = \sum_{i=1}^{n} \max(o_i(C_i - A_{i+1}), u_i(A_{i+1} - C_i))$$

Example 1: 3 jobs, u = 10, o = 1

$$\begin{array}{|c|c|c|c|c|c|c|} p_1=4 & o & p_2=2 & u & p_3=3 \\ \hline & & & & & \\ 0 & 3 & 7 & 10 \end{array}$$

Total Cost = 1 + 10 + 0 = 11

- Project scheduling (Bendavid and Golany, 2009)
- Serial production systems (Elhafsi 2002)
- Servicing ships at seaports (Sabria and Daganzo 1989)
- Professors scheduling meeting with grad students

• . . .

Existing Models

 P_i : random variable

Cost function

$$F(A) = \mathbb{E}_P[F(A, P)]$$

Optimization problem: Minimize expected cost

• Computing cost of a schedule may be intractable

Known methods:

- Sequential bounding algorithm (Denton and Gupta 2003)
- Monte Carlo techniques (Robinson and Chen 2003)
- Local search (Kandoorp and Koole 2007)
- Submodular function minimization (Begen and Queyranne 2009)

Drawback 2: Need for Data

Distribution of P_i may not be known

A robust optimization framework

- Olosed form optimal solution
- Structural insights into the problem

Given: minimum and maximum possible execution time of each job.

 \mathcal{P} : Set of all possible realization of processing times of jobs Robust Model

$$F(A) = \max_{P \in \mathcal{P}} F(A, P)$$

Optimization problem: minimize worst-case scenario(s) cost.

Main idea: Balance between maximum underage cost of job i, and maximum overage cost *due to* job i.

Maximum possible underage cost of job $i = u_i(a_i - \underline{p}_i)$.

Maximum possible contribution of job i to overage costs of all jobs succeeding i:

Maximum possible contribution of job i to overage costs of all jobs succeeding i: $(\sum_{j=i}^{n} o_j)(\overline{p}_i - a_i)$.

Equating maximum possible underage and overage costs:

$$u_i(a_i - \underline{p}_i) = (\sum_{j=i}^n o_j)(\overline{p}_i - a_i)$$

We get:

$$a_i^G = \frac{u_i \underline{p}_i + (\sum_{j=i}^n o_j) \overline{p}_i}{u_i + \sum_{j=i}^n o_j}$$

Theorem

The global balancing schedule is optimal for the robust version when the underage costs of the jobs are equal.

Closed form optimal solution for robust model

Intuitive Interpretation

If job *i* alone is scheduled:

$$a_i^* = \frac{u_i \underline{p}_i + o_i \overline{p}_i}{u_i + o_i}$$

However, if jobs $i + 1, \ldots, n$, are to be scheduled after job i:

$$a_i^G = \frac{u_i \underline{p}_i + o_{\ge i} \overline{p}_i}{u_i + o_{\ge i}}$$

where $o_{\geq i} = \sum_{j=i}^{n} o_j$.

Sequence of min-length jobs followed by max-length jobs.

Assigned duration to job *i* is in interval $[\underline{p}_i, \overline{p}_i]$.

$$\begin{array}{c|c} \underline{p_i \leq a_i^* \leq \overline{p}_i} \\ \hline \\ A_i & A_{i+1} \end{array}$$

<u>p</u>_i ≤ a^{*}_i: True for any instance (Begen and Queyranne 2009).
a^{*}_i ≤ <u>p</u>_i: Holds only for non-decreasing u[']_is.

Optimal assigned duration to a job independent of jobs preceding it Example: Optimal solution for jobs 2-5:

A_1	A_2	A_3	A_4	A_5	A_6

Cost parameters: u = 10, o = 1

Stochastic model:

- Job durations: Discrete version Weibull distribution with $\mu = 48$ and $\sigma = 26$
- Stochastic optimal solution found using local search Robust model:

•
$$\underline{p} = \mu - \sigma = 22$$
, $\overline{p} = \mu + \sigma = 74$

Comparison with Stochastic Model

Relative performance =
$$\frac{ROB - OPT}{OPT} \times 100$$
,

where

- OPT = Average cost of stochastic optimal schedule
- ROB = Average cost of robust optimal schedule

Impact of Standard Deviation

Summary

- Closed form solution for robust model
- Model can be used even if no historical data available
- Structural insights into the problem

Summary

- Closed form solution for robust model
- Model can be used even if no historical data available
- Structural insights into the problem

Future directions

- Solving the ordering problem
- Scheduling multiple facilities
- Incorporating no-shows and emergency jobs

Thank You!

Questions??

Impact of Number of Jobs

Impact of Underage Cost

