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What is My Thesis All About?
Optimization

2



What is My Thesis All About?
OptimizationDisrete Non-Linear Robust

2



Outline
Robust appointment sheduling (M. and Stiller 2011)Optimizing funtions of low rank over a polytope (M. andShulz 2010)Approximation shemes for ombinatorial optimizationproblems with many objetives ombined into one (M. andShulz 2011) 3



The ProblemExample: Sheduling outpatient surgeriesGiven:Surgery 1P1 Surgery n

Pn
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The ProblemExample: Sheduling outpatient surgeriesGiven:Surgery 1P1 Surgery n

Pn

Find:
A1 A2 An An+1Sheduled start of surgery 1 Sheduled end of surgery n 4



The Problem
Job proessing:If job i− 1 �nishes before Ai, job i starts at Ai.Job i− 1 Job i

AiOtherwise: job i starts immediately after ompletion of job i.Job i− 1 Job i

Ai
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Costs
Ci = ompletion time of job i.

Ci < Ai+1: underage ost ui(Ai+1 −Ci). (Job i is underaged)Job i

Ci Ai+1

underage
Ci > Ai+1: overage ost oi(Ci −Ai+1). (Job i is overaged)Job i

Ai+1 Ci

overage
6



Costs
P : a given realization of proessing times of jobs.Cost funtion

F (A,P ) =

n
∑

i=1

max(oi(Ci −Ai+1), ui(Ai+1 − Ci))Example 1: 3 jobs, u = 10, o = 1

0 3 7 10
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P : a given realization of proessing times of jobs.Cost funtion

F (A,P ) =

n
∑

i=1

max(oi(Ci −Ai+1), ui(Ai+1 − Ci))Example 1: 3 jobs, u = 10, o = 1

0 3 7 10

p1=4 p2=2 p3=3o u

7



Costs
P : a given realization of proessing times of jobs.Cost funtion

F (A,P ) =

n
∑

i=1

max(oi(Ci −Ai+1), ui(Ai+1 − Ci))Example 1: 3 jobs, u = 10, o = 1

0 3 7 10

p1=4 p2=2 p3=3o uTotal Cost = 1 + 10 + 0 = 11 7



Other AppliationsProjet sheduling (Bendavid and Golany, 2009)Serial prodution systems (Elhafsi 2002)Serviing ships at seaports (Sabria and Daganzo 1989)Professors sheduling meeting with grad students
. . . 8



Existing Models
Job i

Pi: random variableCost funtion
F (A) = EP [F (A,P )]Optimization problem: Minimize expeted ost 9



Known MethodsSequential bounding algorithm (Denton and Gupta 2003)Monte Carlo tehniques (Robinson and Chen 2003)Loal searh (Kandoorp and Koole 2007)Submodular funtion minimization (Begen and Queyranne2009) 10



Our Contributions
1 A robust optimization framework2 Closed form optimal solution3 Near-optimal sequening of jobs when jobs an be re-arranged
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The Robust ModelGiven: minimum and maximum possible exeution time of eah job.Job i

p
i

pi

P: Set of all possible realization of proessing times of jobsRobust Model
F (A) = max

P∈P
F (A,P )Optimization problem: minimize worst-ase senario(s) ost. 12



The Global Balaning Heuristi
Main idea: Balane between maximum underage ost of job i, andmaximum overage ost due to job i.Maximum possible underage ost of job i = ui(ai − p

i
).Job i

Ai Ai+1

p
i

ai
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The Global Balaning Heuristi
Maximum possible ontribution of job i to overage osts of all jobssueeding i: Job i

Ai Ai+1

Job i+ 1

Ai+2

pi
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The Global Balaning HeuristiMaximum possible ontribution of job i to overage osts of all jobssueeding i: (∑n
j=i oj)(pi − ai).Job i

Ai Ai+1

Job i+ 1

Ai+2

pi

Contribution of overage of job i to overage of job i+ 1
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The Global Balaning Heuristi
Equating maximum possible underage and overage osts:

ui(ai − p
i
) = (

n
∑

j=i

oj)(pi − ai)We get:
aGi =

uipi + (
∑n

j=i oj)pi

ui +
∑n

j=i oj
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The Main Theorem
Theorem (M. and Stiller 2011)The global balaning shedule is optimal for the robust versionwhen the underage osts of the jobs are non-dereasing(ui ≤ ui+1).Closed form optimal solution for robust model
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Intuitive InterpretationIf job i alone is sheduled:
a∗i =

uipi + oipi

ui + oi

Ai Ai+1

p
i

Ai Ai+1

pi
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Intuitive InterpretationHowever, if jobs i+ 1, . . . , n, are to be sheduled after job i:
aGi =

uipi + o≥ipi

ui + o≥iwhere o≥i =
∑n

j=i oj .
Ai Ai+1 Ai+2 Ai+3

p
i

Worst ase senario for tail jobs
pi pi+1 pi+2

Ai Ai+1 Ai+2 Ai+3 19



Worst Case Senarios for the Optimal SheduleSequene of min-length jobs followed by max-length jobs.
p
1

p
2

p
3

A1 A2 A3 A4

p
1

p
2 p3

A1 A2 A3 A4

p
1 p2 p3

A1 A2 A3 A4

p1 p2 p3

A1 A2 A3 A4 20



Comparison with Stohasti Model
Cost parameters: u = 10, o = 1Stohasti model:Job durations: Disrete version Weibull distribution with

µ = 48 and σ = 26Stohasti optimal solution found using loal searhRobust model:
p = µ− σ = 22, p = µ+ σ = 74
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Comparison with Stohasti Model
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Ordering ProblemUniform underage ost (ui = 1)Let ∆i = pi − p
i
.Same overage ost:

∆=1 ∆=3Shedule in inreasing order of ∆
23



Ordering ProblemUniform underage ost (ui = 1)Let ∆i = pi − p
i
.Same overage ost:

∆=1 ∆=3Shedule in inreasing order of ∆Same ∆:
o=100 o=1Shedule in dereasing order of o. 23



Ordering HeuristiSequene jobs in inreasing order of ∆/o values.

24



Ordering HeuristiSequene jobs in inreasing order of ∆/o values.Theorem (M. and Stiller 2011)The heuristi gives an α-approximate solution to the orderingproblem, where
α = min

(

1 + o≥1

1 + omin
,

o≥1

1 + o≥1
·
1 + omin

omin

)

o≥1 =

n
∑

i=1

oi, omin = min
i=1,...,n

oiGives a reasonable approximation fator when o≥1 is not too bigompared to omin. 24



Insights
Time allowanes should be greater for the jobs in the start,and smaller for the jobs in the end.Sequening in inreasing order of ∆/o ratio gives anear-optimal ordering of the jobs.
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Outline
Robust appointment sheduling (M. and Stiller 2011)Optimizing funtions of low rank over a polytope (M. andShulz 2010)Approximation shemes for ombinatorial optimizationproblems with many objetives ombined into one (M. andShulz 2011) 26



QuestionWhat is the omplexity of minimizing a non-onvex funtion over apolytope?
min f(x) x ∈ P 27



NP-Hardness Results
The following problems are NP-hard (Matsui 1996):Problem 1

min x1x2s.t. Cx ≥ d

Problem 2
max

1

x1
+

1

x2s.t. Cx ≥ d

28



Hardness of Approximation
Theorem (M. and Shulz 2010)The optimal solution of the problem

min f(x)

x ∈ [0, 1]nwhere f(x) is a onave funtion, annot be approximated towithin any fator unless P = NP.
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Low Rank Funtions
De�nitionA funtion f : Rn → R is of rank k if

f(x) = g(aT1 x, . . . , a
T
k x),where a1, . . . , ak are k linearly independent vetors.Low rank: k �xed.

30



The Optimization ProblemProblem
min /max f(x) = g(aT1 x, . . . , a

T
k x)s.t. x ∈ PExamples:

f(x) = (aT1 x) · (a
T
2 x) (multipliative)

f(x) = (aT1 x) · (b
T
1 x) + (aT2 x) · (b

T
2 x) (bi-linear)

f(x) =
aT
1
x

bT
1
x
+

aT
2
x

bT
2
x
(sum-of-frations) 31



ChallengesCan have multiple loal optima, so any global minimizationalgorithm must avoid getting stuk into a loal optimum.Results known mostly for minimizing quasi-onave funtionsof low rank over a polytope (e.g. Goyal and Ravi (2009),Kelner and Nikolova (2007), Porembski (2004))Bi-linear funtions and sum-of-ratios funtions are neitherquasi-onave nor quasi-onvex. 32



Fully Polynomial Time Approximation Sheme (FPTAS)Consider a family of minimization problems:
min f(x)s.t. x ∈ XDe�nitionFPTAS: A family of algorithms Aǫ, suh that for any ǫ > 0, thealgorithm Aǫis a (1 + ǫ)-approximation algorithm.has running time polynomial in input size and 1/ǫ. 33



Our ResultFPTAS for the following optimization problem for a �xed k:Problem
min /max f(x) = g(aT1 x, . . . , a

T
k x)s.t. x ∈ PAssumptions

g(y) ≤ g(y′) for all y ≤ y′.
g(λy) ≤ λcg(y) for all λ > 1 and some onstant .
aTi x > 0 for all i = 1, . . . , k over the given polytope. 34



Our Result
Examples of funtions satisfying the above onditions:Multipliative forms: f(x) = ∏k

i=1(a
T
i x)Bi-linear forms: f(x) = ∑k

i=1(a
T
i x) · (b

T
i x)The monotoniity assumption an be relaxed:For example, the sum-of-ratios form: f(x) = ∑k

i=1
aT
i
x

bT
i
x

35



The Solution ApproahProblem π

min f(x) = (aT1 x) · (a
T
2 x)s.t. Cx ≥ dSolutionLet fi(x) = aTi x.Compute an approximate Pareto-optimal frontier of thefuntions fi.Return the best solution from the approximate Pareto-optimalfrontier. 36



Pareto-optimal FrontierPareto-optimal front (P (π)) is the set of all non-dominatedsolution points.

f1(x)

f2(x)

37



Approximate Pareto-optimal FrontierSet of solutions Pǫ(π) suh that:for all feasible x, there is x′ ∈ Pǫ(π) suh that
fi(x

′) ≤ (1 + ǫ)fi(x).

f1(x)

f2(x)

((1+ǫ)f1(x),

(1+ǫ)f2(x))
f(x′)

(f1(x),f2(x)))
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Lemma 1An optimal solution of the problem π lies on the Pareto-optimalfront.

f1(x)

f2(x)
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Lemma 2Let x̂ be the solution in Pǫ(π) that minimizes f(x) over all thepoints in Pǫ(π). Then x̂ is a (1 + ǫ)2-approximate solution.

f1(x)

f2(x)

((1+ǫ)f1(x∗),

(1+ǫ)f2(x∗))

(f1(x∗),f2(x∗))
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The Gap Theorem (Papadimitriou and Yannakakis 2000)For a �xed k, it is possible to �nd a Pǫ(π) in time polynomial in |π|and 1/ǫ i� the following �gap problem� an be solved in polynomialtime.
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The Gap Theorem (Papadimitriou and Yannakakis 2000)For a �xed k, it is possible to �nd a Pǫ(π) in time polynomial in |π|and 1/ǫ i� the following �gap problem� an be solved in polynomialtime.Gap problemGiven a k vetor of values (v1, . . . , vk), either(i) return a feasible x suh that fi(x) ≤ vi for all i = 1, . . . , k, or ..
f1(x)

f2(x)

(v1,v2)

(f1(x),f2(x)) 41



The Gap Theorem (Papadimitriou and Yannakakis 2000)Gap problem(ii) assert that there is no feasible x′ suh that fi(x′) ≤ (1− ǫ)vifor all i = 1, . . . , k.
No solution point in this region
f1(x)

f2(x)

(v1,v2)

((1−ǫ)v1,(1−ǫ)v2)
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The Approximation ShemeDivide the solution spae into smaller hyper-retangles, suh that ineah dimension, the ratio of suessive divisions is equal to 1 + ǫ′.(ǫ′ depends on ǫ).

f1(x)

f2(x)
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The Approximation ShemeFor eah orner point, solve the gap problem. Return the set ofundominated solution points.

f1(x)

f2(x)
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Solving the Gap ProblemSame as heking the feasibility of the following LP, for eah ornerpoint (v1, . . . , vk):Gap Problem LP
Cx ≥ d,

aTi x ≤ (1− ǫ′)vi, for i = 1, . . . , k.Need to hek feasibility of O(

(

log (M/m)
ǫ

)k
) LPs.

45



Appliations: Sum-of-Ratios Optimization
min /max f(x) =

aT1 x

bT1 x
+ . . .+

aTk x

bTk x
, s.t. Cx ≥ d.Appliation: Multi-stage shipping problem (Falk and Palosay,1992).Sum-of-frations is not quasi-onvex/quasi-onave in general,no approximation algorithms known.Our result: FPTAS when k is �xed. 46



Minimizing Quasi-onave funtions
f(x) quasi-onave funtion: Can get an FPTAS whihreturns an extreme point of the polytope as an approximatesolution (M. and Shulz 2010, Goyal and Ravi 2010).Appliation: FPTAS for ombinatorial optimization problemswith a quasi-onave objetive funtion.
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A More General Combinatorial Optimization ProblemProblem
min /max f(x) = g(aT1 x, . . . , a

T
k x)s.t. x ∈ X ⊆ {0, 1}d

k is �xed.
g satis�es the same properties as before.(but need not be quasi-onave) 48



Solution ApproahFind best solution in an approximate Pareto-optimal front

f1(x)

f2(x)

((1+ǫ)f1(x∗),

(1+ǫ)f2(x∗))

(f1(x∗),f2(x∗))
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Solving the Gap ProblemTheorem (Papadimitriou and Yannakakis 2000)The gap problem an be solved in polynomial time, if the followingexat problem an be solved in pseudo-polynomial time:Given a non-negative integer C and a vetor (c1, . . . , cd) ∈ Z+,does there exist a solution x ∈ X suh that
d

∑

i=1

cixi = C?
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Examples
Max-min resoure alloation problemSheduling problems with makespan objetiveAssortment optimization problems with logit hoie model(sum-of-frations form)
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InsightsWhih forms are easy to approximate?ProdutBi-linearSum-of-ratiosProvided: low-rank and individual terms positive.
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InsightsWhih forms are easy to approximate?ProdutBi-linearSum-of-ratiosProvided: low-rank and individual terms positive.However:Di�erene-of-funtion forms are hard to approximate. 52



The purpose of Mathematial Programming is insight,not numbers. - A. M. Geo�rion
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