
Optimal Strategies of the Iterated Prisoner’s Dilemma Problem for

Multiple Conflicting Objectives

Shashi Mittal
Dept. of Computer Science and Engineering
Indian Institute of Technology, Kanpur, India

mshashi@iitk.ac.in

Kalyanmoy Deb
Dept. of Mechanical Engineering

Indian Institute of Technology, Kanpur, India
deb@iitk.ac.in

Abstract— In this paper, we present a new paradigm of
searching optimal strategies in the game of Iterated Prisoner’s
Dilemma using multiple objective evolutionary algorithms. This
method is better than the existing approaches, because it not
only gives strategies which perform better in the iterated game,
but also gives a family of non-dominated strategies, which can
be analyzed to see what properties a strategy should have to
win in the game. We present the results obtained with this new
method, and also the common pattern emerging from the set of
non-dominated strategies so obtained.

Keywords: Games, Prisoner’s dilemma, Strategies, Evolu-
tionary algorithms

I. INTRODUCTION

The prisoner’s dilemma is a well known game that has been
extensively studied in economics, political science, machine
learning [1], [2] and evolutionary biology [3]. In this game,
there are two players, each of whom can make one of the two
moves available to them Cooperate (C) or Defect (D). Both
players choose their moves simultaneously and independent
to each other. Depending upon the moves chosen by either
player, each of them gets some payoff. The payoff matrix is
shown in Figure1.

Player 2

Defect

Cooperate R=3 R=3 S=0 T=5

T=5 S=0 P=1 P=1Defect

Decision Cooperate

P

l

a
y
e
r

1

R: REWARD S: SUCKER T: TEMPTATION P: PENALTY

Fig. 1. The classical choice for payoff in Prisoner’s Dilemma (Player 1’s
payoffs are given first).

When both players cooperate, they are awarded at an
equal but intermediate level (the reward, R). When only one
player defects, he receives the highest possible payoff (the
temptation, T) while the other player gets the sucker’s payoff
(the sucker, S). When both the players defect, they receive
and intermediate penalty (the penalty, P).

Several interesting properties of the game can be imme-
diately observed. It can be seen that this is a non-zero sum

game (that is, the sum of the payoffs of the two players is
not always a constant), and hence there is no single universal
strategy which will work for all game plays for a player. In a
one-shot game, both the players will choose to Defect (D, D),
because this move is guaranteed to maximize the payoff of the
player no matter what his opponent chooses. However, it can
be seen that both players would have been better off choosing
to cooperate with each other (hence the dilemma).

In game theory, the move (D, D) of the players is termed
as a Nash Equilibrium [4], which is a steady state of the
game in which no player has an incentive to shift from its
strategy. Nash [5] proved that any n-player game has a Nash
Equilibrium, when randomization in choosing the moves is
permitted. However, as it is clear from the prisoner’s dilemma
game, a Nash Equilibrium may not necessarily be the social
optimum.

The situation becomes more interesting when the play-
ers play this game iteratively (called the Iterated Prisoner’s
Dilemma or IPD) and the payoffs are accumulated over each
iteration. If both the players have no idea about the number of
iterations beforehand, then it is possible to have an equilibrium
which is better than (D, D). The equilibrium outcomes in
iterated games are defined by folk theorems [6]. For prisoner’s
dilemma, there are infinitely many equilibrium outcomes, in
particular it is possible to have an equilibrium outcome in
which both the players always cooperate.

Suppose that there are a number of players, and each player
players the iterated game with other players in a round robin
fashion, the scores being cumulated over all the games. The
winner of the game is the player with the maximum payoff at
the end of the round robin tournament. The problem that we
consider in this paper is to find optimal strategies which will
ensure victory in such a tournament. This has been a widely
studied problem by game theorists and artificial intelligence
experts alike. Axelrod was the first to study this problem
in detail [7], [1], [8]. He used single-objective evolutionary
algorithm for finding the optimal strategies. This is discussed
in section 2. Since Axelrod, there have been several studies
on this problem [9], [10], [11], [12], [13].

However, in all these studies, the problem of finding optimal
strategies has been viewed as a single-objective problem. That
is, the objective is to find strategies which maximize their own
score in a round robin tournament. In this paper, we present
a new approach of finding optimal strategies by considering

the problem as a multiple objective optimization problem:
maximizing self-score and minimizing opponent score. Such
an approach has not been previously investigated in literature
before. We discuss this approach in detail in section 3, the
details of the simulations performed in section 4 and the results
obtained in section 5.

II. AXELROD’S STUDY

Axelrod organized two tournaments in the year 1985 and
invited strategies from a number of experts and game theo-
rists. To his surprise, he found that the winner in both the
tournaments was a very simple strategy, namely ‘Tit for Tat’.
This strategy cooperates on the first move, and then simply
copies the opponent’s last move in it’s subsequent move. That
such a simple strategy turned out to be the winner was quite
surprising, and Axelrod set out to find other simple strategies
with the same or greater power. Axelrod adopted a simple but
elegant way for encoding strategies [1], and then used single-
objective evolutionary algorithm to obtain optimal strategies.
The encoding scheme is described in detail here.

For each move in the game, there are four possibilities: both
the players can cooperate (CC or R for reward), the other
player can defect (CD or S for sucker), the first player can
defect (DC or T for temptation), or both the players can defect
(DD or P for penalty). To code the particular strategy, the
particular behavioral sequence is coded as a three letter string.
For example, RRR would represent the sequence where both
the players cooperated over the previous three moves and SSP

would represent the sequence where the first player was played
for a sucker twice, and then finally defected. This three letter
sequence is then used to generate a number between 0 and 63,
by interpreting it as a number in base 4. One such possible way
is to assign a digit value to each of the characters in following
way: CC = R = 0, DC = T = 1, CD = S = 2 and
DD = P = 3. In this way, RRR would decode to 0, and SSP

will decode to 43. Using this scheme, a particular strategy can
be defined as a 64-bit binary string of C’s (cooperate) and D’s
(defect) where the ith C or D corresponds to the ith behavioral
sequence. Figure 2 shows such an example GA string. For the
example string in the figure, the three-letter code comes to
be RTR for the previous moves (given in the figure). This
decodes to 4, thereby meaning that player 1 should play the
(4+1) or 5-th move specified in the first 64-bit GA string. In
this case, the fifth bit is C, meaning that the player 1 will
cooperate.

Since a particular move depends on the previous three
moves, so the first three moves in a game are undefined in
the above scheme. To account for these six bits (C’s and D’s,
initially assigned at random) are appended to the above 64 bit
string to specify a strategy’s premises, or assumption about the
pre-game behavior. Together, each of the 70 bit strings thus
represent a particular strategy, the first 64 for rules and the
next 6 for the premises.

Axelrod used the above encoding scheme to find optimal
strategies using a single-objective genetic algorithm. He found
that from a random start, the genetic algorithm discovered

(for initial move)

Say, previous three moves are:

Move 3

Move 2

Move 1
Player 1 Player2

C

C

CC

D

C
Code

R

T

R

CDDCC...........CDC CCDDCC

An example EA Solution:

64 positions 6 pos.

RTR=(010) = 4
4

Outcome: (C) or Cooperate

Player 1 chooses 5−th position

Fig. 2. Encoding a strategy for IPD.

strategies that not only performed quite well, but also beat the
overall performance of ‘Tit for Tat’ strategy, mentioned earlier.

In this work, the encoding scheme is the same as that men-
tioned above. However, in addition to a single-objective EA,
we use a MOEA to optimize the strategy. The two objectives
chosen are: (i) maximizing the self-score and (ii) minimizing
the opponent’s score. Here the opponent’s score means the
cumulative score the opponents scored when playing against
a particular strategy.

III. USING MULTIPLE OBJECTIVE EVOLUTIONARY

ALGORITHMS

Most studies of IPD considered a single-objective of max-
imizing a player’s own score. In this paper, for the first time,
we treat the problem as a bi-objective optimization problem
of maximizing the player’s own score and simultaneously
minimize opponent’s score.

A. Why multiple objective evolutionary algorithm?

The original formulation of the prisoner’s dilemma game
looks like a single-objective problem, that is, to find a strategy
which maximizes a player’s self-score. However, this problem
can also be looked as a multiple objective optimization prob-
lem. It is possible to win the game by not only maximizing the
self-score, but also by minimizing the opponent’s score. Since
the prisoner’s dilemma game is a non-zero sum game, it is
possible that there is a trade-off between these two objectives
(we will later show that this is actually the case), and therefore
using a multiple objective evolutionary algorithm may actually
give a better insight to the optimal strategies of playing the
game as compared to a single-objective formulation. This is
because using multiple conflicting objectives, not one but a
number of trade-off optimal solutions can be found. These
non-dominated trade-off solutions so obtained can then be
analyzed to look for any pattern or insights about optimal
strategies for the IPD. If any such patterns are discovered, they
would provide a blue-print in formulating optimal strategies
for the game.

B. The NSGA-II algorithm

For multiple objective optimization, we use the NSGA-II
algorithm given by Deb et al. [14]. NSGA-II has been suc-
cessfully applied to many other multiple objective optimization
problems [15] as well.

IV. SIMULATIONS AND TEST CASES

Both single-objective EA and MOEA were used for getting
optimal strategies. The simulation for both the algorithms
followed these steps. In each generation, a certain number of
strategies were generated, and each strategy was made to play
against 16 other players. Each game consisted of 150 moves.
Then the strategies were sorted in the decreasing order of their
cumulative scores, and the next generation was created using
a recombination operator. The payoff matrix was the same as
shown in Figure 1. The details of 16 other players in the fray
have been given in the appendix. These strategies have been
used extensively in previous studies on IPD.

Clearly, in one particular game, a player can score a max-
imum of 750 (if he always defects, and the opponent always
cooperates), and a minimum of 0 (if he always cooperates,
while the opponent always cooperates). None of these two
extremes are achieved in practice. According to Dawkins [3],
a more useful measure of a strategy is how close it comes to
the benchmark score, which is the score a player will have if
both the players always cooperate. In this case, the benchmark
score is 450. For example if the score of a player, averaged
over all the players he played, is 400, then he has scored 89%
of the benchmark score. This is a more useful way of denoting
the score of a player, since it is independent of the particular
payoff matrix used, as well as the number of players against
which the player played. In all the results presented in the next
section, we will refer only to the average score of a player in
a game, or the score as a percentage of the benchmark score.

V. SIMULATION RESULTS

Now, we present and analyze the results obtained by NSGA-
II.

A. Results obtained using single-objective EA

The single-objective EA used is the same as used by
Axelrod [1]. Two runs of single-objective EA were done. One,
in which the self-score of the player was maximized, and the
other in which the opponent’s score was minimized. For each
of the runs, the population size was fixed at 40. The results
obtained when the EA is run for 200 generations are shown
in Figure 3 and 4.

For maximizing the self-score, the fitness measure of a sam-
ple is its self-score, hence the fitness score is to be maximized,
while in the second score the fitness is the opponent score
(score the opponent had when playing against this player),
which is minimized.

As is clear from the graphs, in the first case the mean fitness
increases steadily, and after 200 generations the maximum
self-score of all of a sample in the population is 441, which is
97% of the benchmark score. When the EA is run for longer

 320

 340

 360

 380

 400

 420

 440

 0 50 100 150 200

F
itn

es
s

Generation

 320

 340

 360

 380

 400

 420

 440

 0 50 100 150 200

F
itn

es
s

Generation

Fig. 3. Plot of the mean fitness (shown in solid line) and maximum fitness
(shown in dotted line) of population when self-score is maximized.

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200

F
itn

es
s

Generation

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200

F
itn

es
s

Generation

Fig. 4. Plot of the mean fitness (shown in solid line) and minimum fitness
(shown in dotted line line) of population when opponent score is minimized.

generations, the maximum fitness converges at 442 and does
not increase further. When these optimal strategies are fielded
in a round robin tournament, these strategies win with a big
margin. Tables 1 and 2 show the outcome (average of 20
runs) of two tournaments. In the first tournament, there are 16
strategies and ‘Tit for Tat’ is the winner with an average score
of 387. In the second tournament, when the single-objective
optimal strategy is fielded, it wins by a huge margin, scoring
as high as upto 97% of the benchmark score. This is in line
with the results obtained by Axelrod. We refer to the strategy
obtained by maximizing the self-score as “Strategy SO”.

When the opponent score is minimized, the minimum fitness
stabilizes at 112. The strategies so obtained perform poorly in
a round robin tournament (their performance is quite similar
to that of the Always Defect strategy). We refer to this strategy
as “Strategy SO-min”. Table 3 shows the average score of the
players when this strategy is included in the tournament. It
can be seen that this strategy performs as bad as the Always
Defect strategy. As such, it seems that there is little incentive
in minimizing the opponent score. However, this is not the

case, as the results of the next subsection will show.

TABLE I

TOURNAMENT 1.

Player Average score
Tit for Tat 387
Soft Majority 379
Tit for two tats 379
Spiteful 376
Hard Tit For Tat 370
Always Cooperate 359
Periodic Player CCD 354
Naive Prober 353
Pavlov 351
Periodic Player CD 351
Remorseful Prober 351
Random Player 323
Hard Majority 317
Suspicious Tit for Tat 310
Periodic Player DDC 309
Always Defect 305

TABLE II

TOURNAMENT 2.

Player Average score
Strategy SO 438
Tit for Tat 390
Soft Majority 384
Tit for two tats 384
Spiteful 381
Hard Tit For Tat 374
Always Cooperate 364
Naive Prober 359
Remorseful Prober 357
Pavlov 357
Periodic Player CCD 336
Periodic Player CD 335
Suspicious Tit for Tat 319
Hard Majority 312
Random Player 310
Periodic Player DDC 296
Always Defect 296

B. Results of MOEA

The parameters used in MOEA are as follows: size of
the population = 200, and the algorithm was run for 200
generations. NSGA-II algorithm [14] was used.

1) Evolution of optimal strategies: Starting from a purely
random distribution, the strategies ultimately converged to the
Pareto-optimal front. This is shown in Figure 5. It shows that
the MOEA is indeed successfully able to search the solution
space for optimal results. It also shows that there is a trade-
off between maximizing the self-score and minimizing the
opponent’s score. In Figure 6, the Pareto-optimal fronts with
a single-objective EA and a few other strategies are shown,
when both the single-objective EA as well as the MOEA is
run for 20,000 generations. After using NSGA-II to obtain
the non-dominated front, a local search was performed from
each of the member of this front, and it was found that there
was little or no improvement in the solution. Therefore, the
non-dominated front obtained using NSGA-II is indeed very

TABLE III

TOURNAMENT 3.

Player Average score
Tit for Tat 372
Soft Majority 375
Tit for two tats 365
Spiteful 363
Hard Tit For Tat 356
Naive Prober 341
Always Cooperate 337
Remorseful Prober 336
Periodic Player CCD 335
Periodic Player CD 334
Pavlov 344
Random Player 309
Hard Majority 306
Suspicious Tit for Tat 300
Always Defect 296
Strategy SO-min 296
Periodic Player DDC 296

close to the actual Pareto-optimal front. The use of local search
from MOEA solutions ensures that the final solution is at least
locally optimal.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

O
pp

on
en

t S
co

re

Self Score

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

O
pp

on
en

t S
co

re

Self Score

Fig. 5. The initial random solution (shown with ’+’) and the non-dominated
front(shown in ’x’), when NSGA-II is run for 20000 generations.

The most significant outcome of the MOEA, is however,
evolution of strategies which perform much better that those
obtained using earlier methods. The strategy with the max-
imum self-score (the maximum score, 451 is slightly better
than that for the optimal strategy obtained using single-
objective EA, 442) had a mean opponent score (214) that was
significantly lower than that for the single-objective optimal
strategy (244). Figure 6 shows the single-objective optimum
strategy (Strategy SO) and the multiple objective optimum
strategy (Strategy MO). Strategy MO so obtained not only
outperformed other strategies in a round robin tournament
(see Table 4 and Table 5), but also defeated the Strategy SO

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

op
po

ne
nt

 s
co

re

Player score

Pareto optimal front and other solutions

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

op
po

ne
nt

 s
co

re

Player score

Pareto optimal front and other solutions

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

op
po

ne
nt

 s
co

re

Player score

Pareto optimal front and other solutions

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

op
po

ne
nt

 s
co

re

Player score

Pareto optimal front and other solutions

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

Fig. 6. The non-dominated solutions, together with the single objective
EA results (the upper and the left vertexes of the triangle) and a few other
strategies.

(Table 5). This clearly shows that MOEA is able to find better
strategies as compared to the single-objective EA.

TABLE IV

TOURNAMENT 4.

Player Average score
Strategy MO 448
Tit for Tat 391
Hard Tit For Tat 375
Soft Majority 370
Tit for two tats 370
Spiteful 363
Naive Prober 358
Remorseful Prober 344
Always Cooperate 337
Periodic Player CCD 336
Periodic Player CD 334
Pavlov 334
Suspicious Tit for Tat 319
Hard Majority 312
Random Player 310
Periodic Player DDC 296
Always Defect 296

The other extreme solution on the Pareto-optimal front is
the same as obtained by minimizing the opponent’s score, and
has the same performance as the Always Defect strategy. Even
though a many of the bit-positions in the strategy string for
this strategy are C, it behaves almost like the Always Defect
strategy, as is discussed later.

2) Relationship among the Pareto-optimal strategies: The
fact that a non-dominated front is obtained by using MOEA
indicates that the strategies lying on this front must have some-
thing in common. As such, different Pareto-optimal strategies
look quite different from each other. To have a closer look at
these strategies, during the game, the number of times each bit

TABLE V

TOURNAMENT 5.

Player Average score
Strategy MO 431
Strategy SO 421
Tit for Tat 394
Hard Tit For Tat 379
Soft Majority 375
Tit for two tats 374
Spiteful 368
Naive Prober 362
Remorseful Prober 351
Always Cooperate 343
Pavlov 341
Suspicious Tit for Tat 327
Periodic Player CD 320
Periodic Player CCD 320
Hard Majority 307
Random Player 296
Always Defect 288
Periodic Player DDC 286

position in the string was used in a round-robin tournament
was recorded, and plotted for different strategies. Figure 7
shows the combined plot for six Pareto-optimal strategies
(chosen from Figure 6), and for six random strategies (for
comparison).

In the plot, the frequency distribution for six Pareto-optimal
strategies are given in the lower half (with self-score decreas-
ing along the y-axis), and for six randomly chosen random
strings in the upper half. The cooperative moves are shown
in white boxes, and the defecting moves are shown in black
boxes. Only those bit positions which were used more than
20 times in the round-robin tournament are shown. The plot
reveals that only a few of the bit positions of a strategy are
used more than 20 times. Also, the Pareto-optimal strategies
show some interesting similarities with respect to the usage
of a particular bit position. For example, positions 0, 1, 4,
5, 17, 18, 21, and 55 turn out to be ‘Defecting’ in all of
the six Pareto-optimal solutions. There are also some trends
in ‘Cooperating’, coming out as common strategies of these
high-performing solutions. We discuss a few of them in the
following:

• 0 : This decodes to PPP, i.e. both the players have
been defecting with each other over the previous three
moves. Since both players are defecting, it is expected
that the player 1 should also defect as a good strategy
for preventing the opponent’s score to be high in the
subsequent moves.

• 1 : This decodes to PPT. The opponent defected on the
first two moves, but did not do so in the third move, while
player 1 defected in all the three moves. In this case,
the strategy is to defect, so as to “exploit” the foolish
opponent.

• 4 and 5 : decodes to PTP and PTT, which are similar to
the previous case, and again the moves are to defect to
exploit the opponent.

• 17 : This implies TPT, i.e. player 1 defected on all

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

S
tr

at
eg

y

Bit position

Plot for the most frequently used bit positions in the strategy string

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

S
tr

at
eg

y

Bit position

Plot for the most frequently used bit positions in the strategy string

Fig. 7. Plot of the frequently used bit positions in the strategy strings.

the previous three moves, but the opponent was foolish
enough to cooperate, clearly in this case, player 1 will
defect, to exploit the opponent.

• 29 : 29 decodes to STR. This represents “reconciliation”,
that is, both the players initially defected, but cooperated
on the last move. So the two players are trying to ensure
cooperation, and hence the next move in a good game-
playing strategy would be to cooperate.

• 55 : 55 stands for RTR. This again a case of exploitation,
since the opponent cooperated on all the previous three
moves even though I defected once. Hence the move in
this situation is to defect.

• 63 : 63 is RRR, that is the players cooperated on all
the previous three moves. Since both the players are
cooperating, so the best move in this case is to continue
cooperating.

The eighth solution in the figure is for the single-objective op-
timum strategy of maximizing self-score alone. Interestingly,
the frequently used moves in this strategy is similar to the
1st strategy of the bi-objective Pareto-optimal solutions (with
the highest self-score). Thus, a recipe for maximizing self-
score by minimizing the opponent’s score is to learn to defect
when the opponent is either defecting or foolishly trying to
cooperate when player 1 is continuously defecting. Another
recipe to follow is to cooperate with the opponent when the
opponent has indicated its willingness to cooperate in the past
moves.

Another matter to note is that as the self-score decreases (as
solutions go up on the y axis), the strategies become more and
more defecting and the frequency of cooperation reduces. To
minimize the opponent’s score, the payoff matrix indicates that
player 1 should defect more often. When this happens, self-
score is also expected to be low against intelligent players,
because both players will engage in defecting more often.

For random strategies, no such pattern is observed. It can
be seen that for the Pareto-optimal strategies, most of the
bit positions are either sparingly used, or are not used at
all. For example, the strategy with the least self-score always
makes defecting moves, even though there are many C’s in its
strategy string, showing that it behaves almost like the Always
Defect strategy.

VI. SIGNIFICANCE OF THE RESULTS

The above results demonstrate the power of MOEAs in
searching better strategies for the IPD problem. The optimal
strategies obtained using this method outperforms all other
strategies. In particular, it performs better than the strategies
obtained using single-objective optimization procedure. This
shows that MOEAs are a more useful methods for finding
optimal strategies, as compared to single-objective EAs.

The fact that a non-dominated front (which is quite close
to the actual Pareto-optimal front) shows that there is indeed
a trade-off between maximizing self-score and minimizing
opponent score. Therefore, to be successful in a round robin

tournament, a player should not only try to maximize its own
score, but also minimize the opponent score.

We further observe that the strategies lying on the non-
dominated front share some common properties. This can give
us valuable insight about the optimal strategies for a round
robin tournament. It will be interesting to make some prototype
strategies using these common features and observing their
performance in a tournament; we leave this for a future
research work.

We had also carried out another simulation in which we
used NSGA-II to minimize two other objectives: Maximize
self-score, and minimize the maximum of the opponent scores
(in previous case, we had minimized the average score of
the opponents). The Pareto-optimal front obtained is shown
in Figure 8 by marking the obtained strategies (maximum
opponent score) with ‘X’. When the average score (marked

min−
avg

min−max

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500
Self Score

O
p
p
o
n
e
n
t

S
c
o
r
e

Fig. 8. Pareto-optimal front obtained when maximum of the opponent score is
minimized (maximum opponent score is represented by ’X’ and corresponding
average score is represented by diamonds) against the Pareto-optimal front
obtained earlier (shown in circles).

with diamonds) over all opponent players are computed and
plotted for these strategies, they are found to be dominated by
the previous Pareto-optimal solutions. The second objective
value of Pareto-optimal solutions using this method is worse
than before, as the maximum of the opponents’ scores is
going to be always more than average of opponents’ scores.
A good spread in solutions is still obtained, but since this new
objective is non-differentiable, the obtained front in this case
is not as smooth as before. As discussed above, the solutions
obtained are also inferior from the earlier solutions. Based on
this study, we may conclude that minimizing the average score
of opponents is a better optimization strategy than minimizing
the maximum score of opponents.

VII. CONCLUSIONS

We have presented a new paradigm for searching optimal
strategies in Iterated Prisoner’s Dilemma (IPD) using a multi-

objective optimization procedure. Such a method has not been
used before in the literature for this problem. It has been
revealed that such a solution strategy has several advantages
over the existing single-objective methods for finding useful
optimal game-playing strategies. Hopefully, such an approach
will find further application in related game-playing problems
in the near future.

REFERENCES

[1] R. Axelrod, “The evolution of strategies in the iterated prisoner’s
dilemma,” in Genetic Algorithms and Simulated Annealing, L. Davis,
Ed. Los Altos, CA: Morgan Kaufmann, 1987.

[2] D. E. Goldberg, Genetic Algorithms for Search, Optimization and
Machine Learning. Reading: Addison-Wesley, 1989.

[3] R. Dawkins, The Selfish Gene. New York: Oxford University Press,
1989.

[4] M. Rubenstein and M. Osborne, A Course in Game Theory. MIT Press,
1994.

[5] J. F. Nash, “Equilibrium points in n-person games,” in Proceedings of
the National Academy of Sciences, vol. 36, 1950, pp. 48–49.

[6] D. Fudenberg and E. Maskin, “The folk theorem in repeated games with
discounting or incomplete information,” Econometrica, vol. 54, no. 3,
1986.

[7] R. Axelrod and W. Hamilton, “The evolution of coperation,” Science,
vol. 211, pp. 1390–6, 1981.

[8] R. Axelrod, The Evolution of Cooperation. New York: Basic Books,
1989.

[9] D. Fogel, “Evolving behaviors in the iterated prisoner’s dilemma,”
Evolutionary Computation, vol. 1, pp. 77–97, 1983.

[10] M. Nowak and K. Sigmund, “A strategy of win-stay, lose-shift that
outperforms tit-for-tat in the prisoner’s dilemma game,” Nature, vol.
364, pp. 56–58, 1993.

[11] B. Beaufils, J. P. Delahaye, and P. Mathieu, “Our meeting with gradual,
a good strategy for the iterated prisoner’s dilemma,” in Artificial Life
V: Proceedings of the Fifth International Workshop on the Synthesis
and Simulation of Living Systems, C. Langton and K. Shimohara, Eds.
Cambridge, MA, USA: The MIT Press, 1996, pp. 202–209.

[12] D. Bragt, C. Kemenade, and H. Poutr, “The influence of evolutionary
selection schemes on the iterated prisoner’ s dilemma,” Computational
Economics, vol. 17, pp. 253–263, 2001.

[13] D. Jang, P. Whigham, and G. Dick, “On evolving fixed pattern strategies
for iterated prisoner’s dilemma,” in Proceedings of the 27th conference
on Australasian computer science, Dunedin, New Zealand, 2004, pp.
241–247.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective algorithm: NSGA-II,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[15] K. Deb, Multiobjective Optimisation Using Evolutionary Algorithms.
Chichester, U.K.: Wiley, 2001.

APPENDIX I

Details about the different strategies used in the round-robin
tournament:

1) Always Cooperate : Cooperates on every move
2) Always Defect : Defects on every move
3) Tit for Tat : Cooperates on the first move, then simply

copies the opponent’s last move.
4) Suspicious Tit for Tat : Same as Tit for Tat, except that

it defects on the first move
5) Pavlov : Cooperates on the first move, and defects only

if both the players did not agree on the previous move.
6) Spiteful : Cooperates, until the opponent defects, and

thereafter always defects.
7) Random Player : Makes a random move.
8) Periodic player CD : Plays C, D periodically.
9) Periodic player DDC : Plays D, D, C periodically.

10) Periodic player CCD : Plays C, C, D periodically.
11) Tit for Two Tats : Cooperates on the first move, and

defects only when the opponent defects two times.
12) Soft Majority : Begins by cooperating, and cooperates

as long as the number of times the opponent has
cooperated is greater than or equal to the number of
times it has defected, else it defects.

13) Hard Majority : Defects on the first move, and defects
if the number of defections of the opponent is greater
than or equal to the number of times it has cooperated,
else cooperates.

14) Hard Tit for Tat : Cooperates on the first move, and
defects if the opponent has defects on any of the previous
three moves, else cooperates.

15) Naive Prober : Like Tit for Tat, but occasionally defects.
16) Remorseful Prober : Like Naive Prober, but it tries to

break the series of mutual defections after defecting.

